
Abstract:
Digital 3D models are used in industry during the design process. Our client,

Siemens PLM, creates software to allow these businesses to view and compare 3D
models. One type of 3D model a business may obtain is called a point cloud, which
is a large group of points in (x,y,z) space with no connections between the points.
Most hardware and software is optimized to handle the far more common
polygon-based 3D models, and Siemens PLM currently has no program capable of
rendering large models made completely of points.

Our task was to design and create a program to render (draw on screen) very
large point clouds (hundreds of millions to a billion points). Our design involves a
process of converting the point data into a usable structure, going through this
structure efficiently to find which points should be drawn, and then efficiently
representing the points on the screen.

Problem Statement:
Rendering very large point clouds comes with the challenges of handling

memory and making sure we maintain a frame rate high enough to allow the user
to interact with the model. We need a solution that will not use a huge amount of
system RAM and can quickly decide which points need to be rendered.

Project Requirements:
Functional Requirements:
• Load a billion-point point cloud provided by Siemens
• Allow the user to rotate, zoom, and pan on a point cloud model

Non-Functional Requirements:
• Maintain an interactive frame rate of no less than 10 fps at 1080p
• Render the highest quality representation of the point cloud
• Programmed using C++

Operating Environment:
• Windows PC with graphics card supporting OpenGL 3.3 or higher

Visual Results:
From left-to-right, our baseline result, our balanced result, and our highest quality result using the Stanford lion (approx. 180,000 points).

Circles (Billboard) Hexagons BlendedOpenGL Points (Size: Right-1, Left-3)

Rendering:
As world state, we have a virtual camera defined by three orthonormal vectors and a position. From the traversal, we get a set of points, each with a position, a radius,

a normal vector representing the surface, and a color. For each point, we create a representation for its surface, a splat, by following steps 1-5. This is done for all points
once per frame.

Step 0

The point, normal vector, and virtual
camera relative to the model’s coordinate

system

Step 1

Use the normal vector to define the plane
of the splat and a 2D coordinate system

with the point as zero

Step 2

Using that coordinate system create a
polygon or circle with the given radius and

color

Step 3

The splat relative to the model’s
coordinate system

Step 4

Transform the splat to be relative the
virtual camera’s coordinate system

Step 5

Transform the splat to be relative the
screen’s coordinate system

Level of Detail Progression

Nodes are organized spatially
using a tree of nested spheres.

Tree leaves are points. Nodes
higher in the tree are
approximations of groups of
nodes.

An approximation can be
rendered more quickly than a
group of nodes, leading to a
speed/quality tradeoff.

Members:
Joel Rausch CprE
Eric Jensen SE/ME
Christopher Jeffers CprE
Faculty Advisor: Dr. Simanta Mitra

Client:
Michael Carter
Andreas Johannsen
Siemens PLM Software

Results:
Using our QSplat variant, we successfully decoupled the size of the point

cloud from the frame rate. We developed six types of splats to balance between
quality and rendering time. Blending splats together produces the highest
quality, but the slowest rendering time. Our circle splat produced the highest
quality and was the fastest of our non-blending types.

The chart below shows the frames rates produced for each type of splat
when rendering a billion-point cloud at a resolution of 1920x1080.

Billboard: Splats do not overlap 3D Depth: Splats overlap PC Billboard: Corrected Interpolation

Stanford Lion © Stanford Computer Graphics Laboratory

Block Diagram:
Our application performs
two major tasks,
traversal and rendering.
These are run
on separate, dedicated
threads of execution.
Traversal involves
looking through the
model for visible points.
The visible points are
then stored in a
buffer for the renderer
to draw to the screen
every frame.

Note: The frame rate was
capped at 29.4 fps for this test.

Solution:
Our research lead us to a point cloud rendering system created at Stanford

University in the year 2000, called QSplat. This system creates a very efficient and
compressed tree structure for our point data that allows us to keep system
memory usage low. Traversing this tree structure allows us to easily find where a
point should be rendered. We are able to improve upon their methods because of
improved hardware they did not have while creating QSplat. This allowed us to
reach our goal of rendering a point cloud with a billion points.

